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Abstract: We investigate the spacetime-dependent condensation of the tachyon in effec-

tive field theories. Previous work identified singularities in the field which appear in finite

time: infinite gradients at the kinks, and (in the eikonal approximation) caustics near lo-

cal minima. By performing a perturbation analysis, and with numerical simulations, we

demonstrate and explain key features of the condensation process: perturbations generi-

cally freeze, and minima develop singular second derivatives in finite time (caustics). This

last feature has previously been understood in terms of the eikonal approximation to the

dynamics. We show explicitly from the field equations how this approximation emerges,

and how the caustics develop, both in the DBI and BSFT effective actions. We also in-

vestigate the equation of state parameter of tachyon matter showing that it is small, but

generically non-zero. The energy density tends to infinity near field minima with a chara-

teristic profile. A proposal to regulate infinities by modifying the effective action is also

studied. We find that although the infinities at the kinks are successfully regularised in the

time-dependent case, caustics still present.
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1 Introduction

In Type II string theories, unstable branes of dimension p decaying into the stable ones

with lower dimensions is well described by the Dirac-Born-Infeld (DBI) type effective ac-

tion [1–3]:

S = −
∫

dp+1xV (T )
√

1 + y, (1.1)

where y = ηµν∂µT∂νT , V (T ) is the asymptotic potential, and we use units in which

α′ = 1. At the beginning of the condensation, the system has zero tachyon field T = 0

and is located on the top of the potential V (T ). It is unstable and will roll down when

driven by a small perturbation. The field evolves towards the minimum of the potential

V = 0, and the condensation ends. The final state corresponds to the disappearance of the

unstable branes, replaced by “tachyon matter” whose properties are not well-understood.
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The condensation process in the inhomogeneous case has also been studied. It has

been realised that the equation of motion from the DBI action leads to solitonic solution

with kinks and anti-kinks [4–7]. At the kinks and anti-kinks, the field remains zero, and

become daughter branes of one dimension lower at the end of the condensation. While the

field in between them grows with time and tends to infinity. The huge difference of the

field values between these two areas makes the field gradient at kinks and anti-kinks very

large and in fact, it can be semi-analytically shown to lead to infinity in finite time [7, 8].

The existence of this kind of singularity prevents straightforward numerical integration of

the space-time dependent field equation [9, 10].

In between the kinks and anti-kinks where the field is approximately homogeneous, an

eikonal approximation 1 + y = 0 reveals that the second and higher derivatives of the field

can reach infinity in finite time. This is interpreted as the formation of caustics [9].

The potential application of the tachyon condensation in the inflation scenario has

been investigated, despite the various problems [11–16]. In the tachyon inflation model,

agreement with the observational data can be achieved [17]. A complex tachyon field

can produce cosmic strings after inflation [18–20]. The appearance of the pressureless

tachyon matter at late stage of the condensation [3, 21] is also a feature of this model.

The fluctuations of the tachyon matter in both the free and the expanding cosmology

background [4, 14, 16, 17, 22] have been studied, and shown to increase linearly with time,

just like ordinary pressureless matter.

In this paper, we study the condensation process using the field equations, demonstrat-

ing and explaining, both analytically and numerically, key features of the inhomogeneous

tachyon condensation process. Perturbations around the homogeneous solutions T = t

“freeze”, that is, show little change after a short initial relaxation period. What change

there is reduces the curvature at maxima, and increases it at minima, until it becomes sin-

gular in finite time. This is interpreted as the formation of a caustic in the eikonal solution.

We also show explicitly from the field equations, backed up with numerical simulations,

that the quantity 1 + y relaxes exponentially to zero, thus accounting for the accuracy of

the eikonal equation.

We also investigate the energy density and pressure of condensing tachyon matter,

showing that it is not quite pressureless, and that the energy density diverges in a charac-

teristic 1/|△x| form near the developing caustic.

One can ask if the instability is an artifact of the DBI effective action. To give a partial

answer, we also study the boundary string field theory (BSFT) effective action [23, 24],

showing that this approaches the eikonal equation eventually.

Finally, we show that a modification of the action proposed by [5] to regulate the

gradient at a static kink does prevent the gradient of the field reaching infinity at the kinks

in the time-dependent case, but does not prevent caustic formation between kinks.

The paper is constructed as follows. In section 2, we give the equation of motion and

its solutions in simple cases. In section 3, we present the 1 + 1 dimensional solutions near

kinks and near extrema respectively. In section 4 and section 5, we discuss the dynamics

approaching the vacuum respectively in the DBI and the BSFT effective theories. Based
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on the results, the features of the tachyon matter towards the end of condensation are

investigated in section 6. In section 7, we discuss the generalised DBI action.

2 Equation of motion

From the DBI action (1.1), we can write down the equation of motion:
(

�T − V ′

V

)

(1 + y) =
1

2
∂µT∂µ(1 + y), (2.1)

where � = ηµν∂µ∂ν . An equivalent expression to the equation of motion is

T̈ = f

{

2Ṫ∇iṪ∇iT + (1 + y)∇2T −∇iT∇jT∇i∇jT − V ′

V
(1 + y)

}

, (2.2)

where f = 1/(1 + ∇iT∇iT ), ∇2 = ∂i∂
i and i, j = 1, . . . , p. V (T ) is the runaway tachyon

potential and its field derivative is V ′ = dV (T )/dT . A suitable choice of potential, derived

from the boundary conformal field theory on the worldsheet [25, 26], is

V =
Vm

cosh (βT )
, (2.3)

where Vm is the maximum potentail located at T = 0, and the constant β = 1 for the

bosonic string and β = 1/
√

2 for superstring.

The energy-momentum tensor is:

Tµν = V (T )

[

∂µT∂νT√
1 + ∂T · ∂T

− ηµν

√
1 + ∂T · ∂T

]

. (2.4)

2.1 The static case

For the 1-dimensional static case, the solution to the field equation is most easily found by

noting that conservation of energy-momentum requires that the pressure is constant:

T11 =
−V

√

1 + T ′2
= −V0, (2.5)

where V0 = V (T0) is the minimum potential when the maximum field T0 is achieved at

x = x0. The maximum field satisfies the condition T ′|T=T0
= 0.

For the inverse hyperbolic potential (2.3), the equation is solvable:

T (x) =
1

β
sinh−1

[

√

1

r2
− 1 sin(β△x)

]

, (2.6)

where r = V0/Vm and △x = x−xm. It represents an array of solitonic kinks and anti-kinks.

Its gradient is:

T ′ = ±
√

1 − r2

r2 + tan2 (β△x)
. (2.7)

For fixed Vm, T ′ tends to infinity at kinks and anti-kinks, where △x = nπ/β, as V0 → 0,

which is consistent with the slow motion analysis on the moduli space of [7].
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2.2 The homogeneous case

In this case, the energy density is conserved and constant:

T00 =
V

√

1 − Ṫ 2
= E, (2.8)

which restricts |Ṫ | ≤ 1.

For the potential (2.3), the time dependent solution is:

T (t) =







1
β sinh−1[

√

1
l2
− 1 cosh (βt)], (E ≤ Vm),

1
β sinh−1[

√

1 − 1
l2

sinh (βt)], (E > Vm),
(2.9)

and its time derivative is:

Ṫ =







±
√

l2−1
l2−tanh2 (βt)

, (E ≤ Vm),

±
√

1−l2

coth2(βt)−l2
, (E > Vm),

(2.10)

where l = E/Vm. For E > Vm, T = 0, |Ṫ | =
√

1 − 1/l2 at t = 0 and |T | → ∞, |Ṫ | → 1 as

t → ∞.

3 Solutions near kinks and extrema

In this section, we study the behaviour of solutions near stationary kinks and extrema,

in order to gain insight into the singular dynamics, and to make contact with previous

work [8, 9].

3.1 Around kinks

Following [8], we expand the field around a stationary kink or anti-kink located at x = xm:

T (t, x) = a(t)△x +
1

6
c(t)△x3 +

1

120
e(t)△x5 + · · · , (3.1)

where △x = x − xm.

For the potential (5.1), V ′/V = −β2T . For the potential (2.3), V ′/V ≃ −β2T when

|T | is small. We use this relation and the expansion (3.1) in the field equation around kinks

and anti-kinks, where |T | is small. The comparison of coefficients gives the equation:

ä = β2a +
2aȧ2 + c

1 + a2
. (3.2)

We are more interested in the solution at late time when a(t) becomes large. If we can

neglect the contribution from c(t),

äa = β2a2 + 2ȧ2. (3.3)

To solve the equation, we set a = 1/z, giving

z̈ + β2z = 0, (3.4)
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with solution

z = z1 cos (βt) + z2 sin (βt). (3.5)

By a suitable choice of the time coordinate, the solution of a can be written

a(t) =
a0

cos (βt)
, (3.6)

where a0 is constant. If we set t∗ = π/(2β), we approximately have: a ∼ 1/(t∗ − t), which

is consistent with the result of [8]. a(t) grows to infinity in a finite time.

More precisely, we now also consider the evolution of the coefficient c(t). With the

same approximation of a being large, we can obtain the equation:

a2c̈ = 8aȧċ + (7β2a2 − 6aä)c − 6β2aȧ2 + e. (3.7)

Combining this equation with eq. (3.3) and neglecting e(t), we find

c(t) = −β2a = − β2a0

cos (βt)
. (3.8)

Therefore, the solution near the kinks and anti-kinks can be expressed as:

T (t, x) = a(t)

[

△x − 1

6
β2△x3 + · · ·

]

≃ a0

β

sin (β△x)

cos (βt)
. (3.9)

This has the following properties at x = xm: T = 0, Ṫ = 0, T ′(t → ∞) → ∞, T̈ = 0 and

T ′′ = 0, which are consistent with the discussion in section 2.

3.2 Around extrema

The field around a stationary peak or trough at x = x0 satisfies the condition T ′|x=x0
= 0.

The expansion around x0 is written:

T (t, x) = T0(t) +
1

2
b(t)△x2 +

1

24
d(t)△x4 + · · · , (3.10)

with △x = x − x0. For convenience, we only consider the behaviour around the field

extrema whose values are positive T0(t) > 0.

For the potential (2.3), V ′/V ≃ −β when T is positive. Inserting the expansion (3.10)

in the field equation (2.2), we get:

T̈0 = (β + b)(1 − Ṫ 2
0 ). (3.11)

The final value of Ṫ0 is decided by the relation between b(t) and β. Here we only consider

two special cases. When b = −β, Ṫ0 is constant and it corresponds to the static case. This

is consistent to the static analytical solution (2.6), which has T ′′ = −β at peaks. Secondly,

if |b| ≪ β, there is an explicit solution for Ṫ0

Ṫ0 = tanh(βt). (3.12)

The solution satisfies Ṫ0 ∈ [0, 1]. Otherwise, the solution can be formally expressed as:

Ṫ0 ≃ 1 − (A/2)e−2(β+b)t, where A is a small positive value.

– 5 –
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Figure 1. The time evolving curves of ḃ(t) vs b(t) with different initial values (b0, ḃ0) in regions

where b ≥ −β. The blue, solid lines indicate that b(t) → 0 at large t and the red, dashed lines

indicate that b(t) tends to infinity.

The equation for the coefficient b(t) is:

b̈ = 2βb2 − 2(β − b)Ṫ0ḃ. (3.13)

Since we are considering the peaks on the positive field side T0 > 0, Ṫ0 should be positive

and tends to 1. Making use of the approximation Ṫ0 ≃ 1 for late time, eq. (3.13) can be

rewritten as:

∂t(ḃ − b2) = −2β(ḃ − b2). (3.14)

Hence,

ḃ = b2 + C exp (−2βt), (3.15)

where C = ḃ0 − b2
0 is a constant, with b0 = b(t = 0) and ḃ0 = (db/dt)|t=0. We have made

numerical solutions of (3.15). The distribution of the final values as a function of b0 and

ḃ0 is presented in figure 1. From these results, we see that a peak (b0 < 0) is most likely to

flatten with time, but a trough (b0 > 0) can deepen and become singular, and will always

do so when ḃ0 is positive. There is a sign of the developement of a caustic.

Let us just focus on the late time behaviour of b(t). In terms of eq. (3.14), as t → ∞
we will have

ḃ = b2. (3.16)

So the solution of b is

b(t) =
b0

1 − b0t
, (3.17)

where b0 = b(t = 0). Thus b blows up at t = 1/b0 when b0 > 0 while b → 0 when b0 ≤ 0.

But ḃ ≥ 0 for both cases. This is consistent with the numerical solutions presented in

figure 1.

– 6 –
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3.3 Caustics around extrema

In terms of the relations in eq. (3.12) and (3.15), we can estimate the quantity 1+y at late

time as:

1 + y ≃ 1 − Ṫ 2
0 −

(

ḃ − b2
)

△x2 ≃
(

Ae−2bt − C△x2
)

e−2βt, (3.18)

If b > −β, we see that 1 + y → 0, as first noted in [9]. If we are in the region ḃ < b2, C is

negative and 1 + y approaches zero from above.

Based on this relation, the authors of [9] argue that there should be caustics forming

around the peaks or troughs. They rewrite the relation (3.18) as an eikonal equation:

Ṡ2 − S′2 = 1, (3.19)

with the approximation S ≃ T and develop a series of characteristic equations for (3.19)

to give

S′′(t, x) =
S′′(0, x)

1 − S′′(0,x)

(1+S′2(0,x))3/2
t
. (3.20)

Thus S′′ blows up in a finite time t = (1 + S′2(0, x))3/2/S′′(0, x) when S′′(0, x) > 0, which

is interpreted as the appearance of caustics or regions where the tachyon field becomes

multivalued. We also note that when S′′(0, x) ≤ 0 there are no caustics, with S′′(t, x) → 0

as t → ∞.

Our results are consistent with the eikonal analysis above: caustics form near troughs

(b > 0) in a time b−1
0 , where b0 ≃ S′′(0, x) at a trough, and peaks tend to flatten (b → 0).

4 Perturbations

In this section, we will consider the evolution of perturbations around a condensing homo-

geneous tachyon field in an arbitrary dimensional Dp-brane. This will also approximately

describes the evolution of the field between well-separated kinks and anti-kinks. A general

form is:

T (t, xi) = T0(t) + τ(t, xi), (4.1)

where τ(t, xi) is the small perturbation along all spatial directions xi (i = 1, · · · , p) on the

Dp-brane.

A trivial case is: T0(t) = 0. Around T0(t) = 0, −V ′/V ≃ β2τ for both potentials (2.3)

and (5.1). Inserting T (t, xi) = τ(t, xi) in the field equation (2.2), we can get the perturba-

tion equation:

∇2τ − τ̈ + β2τ = 0, (4.2)

as expected for a tachyon field with mass squared −β2.

– 7 –
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4.1 Linear perturbations around a condensing field

Plugging the ansatz (4.1) in the field equation with the hyperbolic potential (2.3), we have

the equation of τ
[

T̈0 − β
(

1 − Ṫ 2
0

)]

+
[

τ̈ + 2βṪ0τ̇ −
(

1 − Ṫ 2
0

)

∇2τ
]

+, (4.3)
[

βτ̇2 −
(

β − T̈0

)

∇τ · ∇τ − 2Ṫ0

(

∇τ · ∇τ̇ − τ̇∇2τ
)

]

− [(∂τ · ∂τ) �τ − ∂µτ∂ντ∂µ∂ντ ] = 0.

Solving the zeroth order equation covered in the first square bracket, we get the solution

Ṫ0 = tanh(βt), as given in eq. (3.12).

We first consider the linear perturbation covered in the second square bracket. This

situation applies if all the first order terms remain dominating compared to the second

order terms, though this is always not true as we can see later.

The solution of τ in the second square bracket is separate, and writing τ(t, x) =

f(t)g(x), and we find:
{

∇2g + k2g = 0,

f̈ + 2β tanh(βt)ḟ + k2sech2(βt)f = 0,
(4.4)

where k2 = kik
i and ki are arbitrary constants.

By making the reparameterisation

ρ =
1

1 + e−2βt
,
(

1
2 ≤ ρ ≤ 1

)

, (4.5)

we can rewrite the second equation in eq. (4.4) as

ρ(1 − ρ)
d2f

dρ2
+ κ2f = 0. (4.6)

where κ2 = κiκ
i and κi = ki/β. It is a typical hypergeometric differential equation. The

equation has two linearly independent solutions, the simpler one of which is given as [27]

f(t) = ρ(t)2F1

(

1 −
√

1 + 4κ2

2
,
1 +

√
1 + 4κ2

2
; 2; ρ(t)

)

, (4.7)

where 2F1 is the hypergeometric function.

We will focus on the late time behaviour of τ when Ṫ0 is closed to 1. In this situa-

tion, the second equation in eq. (4.4) becomes f̈ + 2βḟ + 4k2 exp (−2βt)f = 0. With the

reparameterization η = exp (−2βt), we have:

η
d2f

dη2
+ κ2f = 0. (4.8)

The equation is a Bessel style differential equation [28]. Its solution is given as a conbination

of two Bessel functions. The whole solution at late time can be expressed as:

τ(t, xi) =

∫

dpk

(2π)p

[

τ1(ki)h
(1)(t, k)eikixi

+ τ2(ki)h
(2)(t, k)e−ikixi

]

, (4.9)

– 8 –
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where τ1(ki), τ2(ki) are constant parameters corresponding to the mode ki and

h(1,2)(t, k) = e−βtH
(1,2)
1

(

2κe−βt
)

. (4.10)

H
(1,2)
1 (s) are Hankel functions, which are linear combinations of the Bessel function of

the first kind J1(s) and the second kind Y1(s): H
(1)
1 (s) = J1(s) + iY1(s) and H

(2)
1 (s) =

J1(s) − iY1(s). They satisfy H
(1)
1 (s) = H

(2)
1 (s)∗. In order to get τ = τ∗, τ1(ki) = τ2(ki)

∗.

Then we can set τ1(ki) = τ0(ki)e
iδ(ki) and τ2(ki) = τ0(ki)e

−iδ(ki).

Since we are considering the real tachyon field T , the perturbation (4.9) should be real

as well and can be expressed as, denoting s = 2κe−βt:

τ(t, xi) =

∫

dpk

(2π)p
s

2κ
τ0(ki)

[

J1(s) cos (kix
i + δ(ki)) − Y1(s) sin (kix

i + δ(ki))
]

. (4.11)

For small parameters 0 < s ≪
√

2,

J1(s) ≃
s

4
, Y1(s) ≃ − 2

πs
. (4.12)

Thus, at late time, eq. (4.11) approximately reduces to:

τ ≃ β

π

∫

dpk

(2π)p
τ0(ki)

k
sin (kix

i + δ(ki)). (4.13)

This result indicates that the perturbation corresponding to each mode ki freezes at late

time and that shorter wavelength modes are damped more than longer wavelength.

4.2 Comparison with the numerical simulations

We make numerical simulations of the perturbations in 1 + 1 dimensions based on the

Hamiltonian formalism [3, 29, 30]. Define the momentum conjugate to T

Π =
δS

δṪ
=

V (T )Ṫ√
1 + y

. (4.14)

Then the equations of motion can be expressed as

Π̇ = ∇j

(

∇jT
√

Π2 + V 2

√

1 + (∇T )2

)

− V V ′√1 + (∇T )2√
Π2 + V 2

, (4.15)

Ṫ =
Π
√

1 + (∇T )2√
Π2 + V 2

. (4.16)

The simulation is implemented on a spatial lattice of 1280 points. The lattice spacing

and the timestep are set to be respectively: δx = 0.05 and δt = 0.01. We use the symmetric

difference for the first order field derivatives and a 3-point stencil for the second order field

derivatives. We adopt the second order Runge-Kutta method for the time update. In the

simulation, the constant β = 1/
√

2.

To get the perturbation, we first need to produce two sets of simulation data with two

different initial conditions respectively: T (t = 0, x) = D and T (t = 0, x) = D+ δ(x), where

– 9 –
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Figure 2. The numerical plots of the perturbation τ(t, x) based on eqs. (4.15) and (4.16). The

initial homogeneous field is set to be D = 1.

D is the field value at t = 0: D = T0(t = 0), and δ(x) is the random initial perturbation:

δ(x) = τ(t = 0, x). The difference between them gives the 1 + 1 dimensional evolution

surface of τ(t, x). In figure 2, we present the plots of the perturbation at t = 8, 24, 38.4

respectively. We can see that the perturbation almost “freezes”, especially at peaks and

troughs, which is consistent with the linear perturbation analysis in the previous subsection.

However, the second derivative ∇2τ can be seen to decrease in magnitude near peaks, and

increase near troughs, until the simulation breaks down (signalled by spikes in τ at around

x ≃ 27 and x ≃ 53). These features are consistent with the analysis in section 3, but not

with the predictions from the linear perturbation equation. Hence, we need to take into

account higher order perturbation terms to understand this behaviour.

4.3 Non-linear perturbations and development of caustics

We start with a discussion of the behaviour of 1 + y. For large T , we can assume that

Ṫ → 1, T̈ → 0 and V ′/V ≃ −β. The equation of motion (2.1) becomes

∂

∂t
(1 + y) ≃ −2

(

∇2T + β
)

(1 + y) + 2∇iT∇jT∇i∇jT − Ṫ
∂

∂t

(

∇2T
)

. (4.17)

If the last two terms are negligible compared to the first one, then 1 + y should decrease

exponentially with time to zero. This accounts for the numerical observation first made

in [9].

To check the expectation that 1 + y tends to zero exponentially, we present the plots

of 1 + y in figure 3 for a field T (t, x) = D + t + τ(t, x), where the plots of the perturbation

τ are given in figure 2. The result indicates that 1 + y really decreases with time to very

small positive values exponentially in the early stage. However, the simulation can not

– 10 –
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Figure 3. The plots of log(1+ y) for the field T (t, x) = D + t+ τ(t, x), where D = 1 and the plots

of τ(t, x) are given in figure 2.

continue to late time due to instabilities emerging at the positions where τ eventually gets

discontinous in figure 2, i.e., near troughs. This implies that the instability should correlate

with the caustics formation. In what follows, we will determine how this happens in the

perturbation method .

Including the quadratic order terms of τ in the second square bracket in eq. (4.3), we

have in the limit Ṫ0 → 1

∂t

[

2τ̇ − (∇τ)2
]

= −β
[

2τ̇ − (∇τ)2
]

+ τ̈ − τ̇
(

2∇2τ + βτ̇
)

. (4.18)

It is consistent with eq. (3.14) if we set τ = b(t)△x2/2 in p = 1 case. When the last two

terms on the right hand side of the equation are less important than the first one, we will

get at late time

1 + y ≃ 2τ̇ − (∇τ)2 = 0. (4.19)

Specially, τ̇ = 0 when ∇iτ = 0, i.e., at exactly the peaks or troughs, the perturbation

“freezes”. But away from the peaks and troughs, the perturbation increases with a in-

creasing rate equal to (∇τ)2/2.

Let us see what features we can get from the equation τ̇ = (∇τ)2/2 around peaks and

troughs. Since τ “freezes” at exactly the peaks and troughs and grows away from them,

the field gradient |∇iτ | decreases near peaks and increases near troughs. Therefore, the

curves of τ tend to flatten near peaks untill ∇iτ = 0, where τ̇ = 0 and so τ stops growing.

Whereas near troughs, the curves of τ sharpen, with |∇iτ | increasing. This accelerates the

growth of τ . In this case, τ , |∇iτ | and ∇2τ all will tend to infinity, which accounts for the

caustic formation and so the instability near the vacuum.

– 11 –
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5 The BSFT action

The effective action derived from BSFT is given by [23, 24]: L = −V (T )F (y) with the

potential

V (T ) = exp

(

−β2T 2

2

)

, (5.1)

and the kinetic part

F (y) =
1

2

4yyΓ2(y)

Γ(2y)
= 22y−1yB(y), (5.2)

where y = ∂µT∂µT as before and B(y) is the beta function. It is easy to see that F ≥ 0

when y ≥ −1/2. Aspects of the dynamics arising from the the BSFT action have been

given in [31, 32].

Using Γ(1 + u) = uΓ(u), we can derive the recursion relation

B(y) = 22m (y + 2m−1
2 )(y + 2m−3

2 ) · · · (y + 1
2 )

(y + m − 1)(y + m − 2) · · · (y + 1)y
B(y + m), m = 1, 2, 3, . . . (5.3)

From Stirling’s approximation, B(u) ≃ 21−2u
√

π/u for large u. Then the BSFT action can

be expressed as

F (y) ≃ (y + 2m−1
2 )(y + 2m−3

2 ) · · · (y + 1
2)

(y + m − 1)(y + m − 2) · · · (y + 1)

√

π

y + m
, (5.4)

and we will find it useful to take m ≫ −y.

For m = 1, we approximately have

F (y) ≃
√

π
√

1 + y, (5.5)

when 1 + y ≫ 1. This is the DBI action. So the behaviour of the BSFT action (5.2) for

large 1 + y should be similar to that discussed in previous sections. In what follows, we

will discuss the behaviour near the vacuum when y is small or negative.

5.1 Time evolution

We first explore the homogeneous approach to the vacuum. The equation of motion in this

case is

F − 2yF ′ =
E

V
, (5.6)

where y = −Ṫ 2, F ′ = ∂F/∂y and E is a constant.

The condensation starts with a small velocity |Ṫ |. Let us consider the case when Ṫ = 0.

With the relation of the gamma function Γ(2u) = 22u−1Γ(u)Γ(u+1/2)/
√

π, we can rewrite

the kinetic part F (y) as

F (y) =
√

π
Γ(y + 1)

Γ(y + 1
2)

. (5.7)

Thus, F (0) = 1 since Γ(1/2) =
√

π. This gives V (T ) = E at Ṫ = 0 in terms of the equation

of motion.

– 12 –
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Now we need to find where the tachyon potential gets the minimum value V (T ) = 0,

which corresponds to the vacuum. Since y = −Ṫ 2 ≤ 0 in the homogeneous case, we can

change the action to the form by using Γ(1 − u)Γ(u) = π/ sin(πu)

F (y) = −22y+1π cot(πy)
1

B(−y)
≃ −

√
π cot(πy)

√−y. (5.8)

Then the homogeneous equation of motion (5.6) becomes

2(−πy)
3

2

sin2(πy)
≃ E

V
. (5.9)

It is easily seen that V = 0 at y = −n, where n = 1, 2, 3, . . .. The behaviour in taking the

limit Ṫ 2 → n is,

V (T ) ∼ E

2

√

π

n3
(Ṫ 2 − n)2. (5.10)

The equation implies that the tachyon potential vanishes for either Ṫ 2 → n or n → ∞. We

will assume that only the first pole (y = −1) in eq. (5.9) is relevant, as the condensation

starts with y ≃ 0.

5.2 Dynamics near the vacuum

The full equation of motion for a general F (y) is

(

2
F ′′

F ′ ∂µT∂νT + ηµν

)

∂µ∂νT +
V ′

V

(

y − 1

2

F

F ′

)

= 0. (5.11)

Note that V ′ = ∂V/∂T , F ′ = ∂F/∂y and F ′′ = ∂2F/∂y2.

We now consider the dynamics approaching the vacuum when y → −1 from above.

Since F/F ′ = 1/(ln F )′ and F ′′/F ′ = (ln F )′′/(ln F )′+(ln F )′, we only need to know (ln F )′

and (ln F )′′ for deriving the equation of motion. In the limit y → −1, we approximately

have for any m ≥ 2 from eq. (5.4)

(ln F )′ ∼ − 1

1 + y
, (ln F )′′ ∼ 1

(1 + y)2
. (5.12)

The corresponding expressions for the DBI action are (ln F )′ = 1/[2(1 + y)] and (ln F )′′ =

−1/[2(1 + y)2]. Inserting them in the equation of motion, we have

(

�T − V ′

V

)

(1 + y) ≃ 2∂µT∂µ(1 + y), (5.13)

So it is very similar to eq. (2.1) for the DBI action. The only difference is a change of the

coefficient on the right hand side. Therefore, there should be similar consequences for the

dynamics approaching the vacuum from the BSFT action to those from the DBI action.

That is, the perturbations “freeze” and the second derivative becomes discontinuous.

– 13 –
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6 Tachyon matter

Reverting to the DBI action, the energy density and the pressure are given in flat spacetime

by eq. (2.4):

ρ = T00 =
1 + (∇T )2√

1 + y
V (T ), (6.1)

pi = Tii = −V (T )
1 + y − (∇iT )2√

1 + y
= q +

(∇iT )2

1 + (∇T )2
ρ, (6.2)

where there is no sum on i and q = L = −V (T )
√

1 + y, and so

wi =
pi

ρ
= − 1 + y

1 + (∇T )2
+

(∇iT )2

1 + (∇T )2
. (6.3)

From the above formulas, it is easy to see that the system at the beginning of the

tachyon condensation has positive energy density and negative pressure everywhere: pi =

−ρ = −Vm, the characteristic of the interior of a brane. After the condensation starts, the

behavior in different areas becomes different.

Consider the case that the decay of the Dp-brane happens only in the x1 direction to

produce a D(p − 1)-brane. Then the decay process can be described by a kink-anti-kink

tachyon solution along the x1 direction.

First, we consider the appearance of a D(p − 1)-brane, which we locally choose to be

orthogonal to the x1-direction. Since Ṫ = 0 and |∇1T | → ∞ towards the end of the decay

at kinks, the energy density near the kinks ρK → ∞. If the approximate solution found

in section 3.1 is to be believed, this divergence happens in finite time, in accordance with

the analysis in the string field theory [33, 34]. The pressure components in all p spatial

directions are respectively: pjK = q (2 ≤ j ≤ p) and

p1K = pjK +
(∇1T )2

1 + (∇1T )2
ρK . (6.4)

Therefore, pjK ≃ −ρK and p1K ≃ pjK + ρK near the end of the condensation. And so

pjK → −∞ and p1K → 0 as t → ∞, which further give wjK → −1 and w1K → 0. This is

consistent with the appearance of a D(p − 1)-brane in a vacuum.

Second, we consider the approach to vacuum of a homogeneous field with an expanded

inhomogeneous part. The energy density ρV and the pressure piV near the vacuum can

be analysed using the results in section 3. The final values of ρV and piV at the end

of the condensation are not obviously determined because the two quantities V (T ) and

1 + y both tend to zero as t → ∞. They can be estimated in terms of the expression of

1 + y in eq. (3.18), from which we see that 1 + y ≃ Ae−2(β+b)t → Ae−2βt when b < 0

(e.g., near peaks) and 1 + y → −C△x2e−2βt when b > 0 (e.g., near troughs). To keep

1 + y positive, we assume that C = ḃ0 − b2
0 is negative. For the hyperbolic potential (2.3),

V (T ) ≃ 2Vm exp [−β(D + t)]. Thus the energy density near the vacuum is

ρV ≃







2Vm√
A

e−βD, (b < 0),
2Vm(1+b2△x2)√

Ae−2bt−C△x2
e−βD, (b > 0).

(6.5)
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Figure 4. The correlation between the energy density ρV (t, x) near the vacuum and the second

derivative T ′′. The plots are made at t = 16. It is easily seen that ρV (t, x) peaks at positions where

T ′′ also peaks and that 1/ρV ∼ |△x| near the peaks of ρV .

The energy density tends to a constant near peaks and diverges at troughs △x = 0 as

t → ∞. When b is not too large, ρV ∼ 1/|△x| near but away from the trough at △x = 0.

In figure 4, we present the plots of the energy density ρV and its inverse 1/ρV relative

to the plots of the second derivative b = T ′′ at a time t = 16. The figure indicates strong

relation between ρV and T ′′: the energy density peaks where T ′′ also peaks. By comparison

with figure 2, we see that the sharpest peaks in T ′′ occur at troughs in T . The top plot

shows evidence that around the peaks of the energy density, we have the approximate

relation 1/ρV ∼ |△x|.
It is interesting to note that the tachyon fluid is not quite pressureless in general.

Indeed, from eq. (6.2), noting that q → 0 near the vacuum as t → ∞, we find ρV : piV ∼
ρV (∇iT )2/[1+ (∇T )2]. Given that T “freezes”, we see that the small fluctuations give rise

to a small pressure. The equation of state parameter wiV is non-zero.

7 The generalised DBI action

The problem with the divergence in the gradient of the field near kinks has been recognised

for some time [8–10], and regularisations of the action have been proposed in [5, 35] with

respect to this problem, which have the important property that their static kinks have

finite field gradients as the minimum potential V0 → 0. In what follows, we will consider

the modified action given in [5] in the 1 + 1 dimensions:

L = −V (T )(1 + y)
1

2
(1+ǫ). (7.1)
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where ǫ is a small positive value. The equation of motion from it is:

T̈ = f{2
(

1 − ǫ2
)

Ṫ∇iT∇iṪ − V ′

V
(1 + y)(1 − ǫy)

+(1 + ǫ)[(1 + y)∇2T − (1 − ǫ)∇iT∇jT∇i∇jT ]}, (7.2)

where f = 1/
[

(1 + ǫ)(1 + ∇iT∇iT − ǫṪ 2)
]

.

First, we consider the field expansion around the kinks and antikinks in the case of the

hyperbolic potential (2.3). Doing the field expansion like (3.1), we get the equation of a(t):

ä =
β2a

1 + ǫ
− ǫβ2a3

1 + ǫ
+

(1 − ǫ)(2aȧ2 + c)

1 + a2
+ ǫc. (7.3)

So when a grows large and satisfies 1 ≪ a ≪ 1/
√

ǫ, we have a similar solution to eq. (3.6).

When a ≫ 1/
√

ǫ, the a3 term becomes important and a begins to execute damped oscilla-

tions. a settles to a = 1/
√

ǫ.

To show this point clearly, we can transform eq. (7.3) into a soluble form, assuming

1 + a2 ≃ a2, and neglecting c. When ǫ 6= 1/2, we set a = z−1/(1−2ǫ) and then have:

z̈ +
∂U(z)

∂z
= 0, (7.4)

where U(z) is:

U(z) =

(

1
2 − ǫ

)

β2z2

(1 + ǫ)

[

1 +

(

1

2
− ǫ

)

z−
2

1−2ǫ

]

, (7.5)

For ǫ > 0, the minimum value of U(z) happens at z = ǫ(1/2−ǫ) or

a =
1√
ǫ
. (7.6)

This value should be the final field gradient T ′ ≃ a as t → ∞. When ǫ = 1/2, we can set

a = ez and get the same equation as in (7.4) but with a different potential U(z):

U(z) =
β2

6

(

e2z − 4z
)

. (7.7)

The position according for the minimum potential U(z) is z = ln
√

2 or a =
√

2, which is

consistent to the above result of ǫ 6= 1/2.

For the expansion around extrema, we get:

T̈0 =

[

1 + ǫṪ 2
0

1 + ǫ
β + b

]

1 − Ṫ 2
0

1 − ǫṪ 2
0

. (7.8)

When ǫ < 1, 1 − ǫṪ 2
0 is always positive if |Ṫ0| ≤ 1. Similar to the analysis for the DBI

action with ǫ = 0, |Ṫ0| still goes to 1 here at the end of condensation.

With the approximation Ṫ0 ≃ 1 for positive T0, the equation for b(t) can be ex-

pressed as:

(1 − ǫ) ∂t

(

ḃ − b2
)

= −2 (β − ǫb) (ḃ − b2). (7.9)
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For ǫ < 1, it can be shown both analytically and numerically that there are still two possible

final values for b(t) at t → ∞. When b tends to zero, we can write the solution similar

to (3.14). So it can evolve to zero at t → ∞. When b(t → ∞) → ∞, b grows to infinity

more quickly than the case with ǫ = 0. Thus caustics are possible to form in a finite time

for the modified DBI action.

Hence, although this modified effective action solves the problem of diverging gradients

near kinks, it still has unstable solutions and breaks down as the vacuum is approached.

8 Conclusions

We have investigated the inhomogeneous tachyon condensation process, focusing on the

solutions near kinks (where T = 0) and also in regions where the field is approxi-

mately uniform.

We obtained an approximate spacetime-dependent solution near the kinks and anti-

kinks, verifying that the spatial derivative of the field T ′ tends to infinity in a finite time.

We show that this singularity can be avoided by modifying the effective action in 1 + 1

dimensions, which is consistent with the result obtained in the static case by [5, 35].

We then studied inhomogeneous tachyon condensation in the absence of kinks.

In (3.18), an analysis assuming that the tachyon field obeyed the eikonal equation

Ṫ 2 + ∇T 2 = 1 showed that near troughs T ′′ diverges in finite time, which was interpreted

as the production of caustics in free-streaming matter. Directly from the semi-analytical

solutions, we learnt how the field obeys this equation and how the solutions from this

equation lead to singularities in T ′′. A linear analysis shows that perturbations “freeze”,

except near extrema; Adding in higher order terms shows that the curvature (∇2T ) in-

creases near troughs (extrema with ∇2T > 0) and decreases near peaks (∇2T < 0). For

the former case, this leads to discontinuous gradients near troughs, which in the eikonal

approximation leads to caustics. Moreover, the energy density ρV diverges as t → ∞ near

troughs. The pressure of tachyon matter is small, but the equation of state parameter w

does not generically vanish.

The same analysis applies also to BSFT effective theories, and to another simple pro-

posal for modifying the effective action [5, 35]. The large gradients and higher derivatives

signal a breakdown of the effective action (1.1) for describing the dynamics of the tachyon

field near the vacuum. Whether or not caustics actually form remains open for further

discussion.
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